Abstract
Coarse-grained molecular dynamics simulations are conducted, for the purpose of the study on the microscopic structure change of crystalline polymer due to degradation. Interlamellar structure changes are observed during the degradation, decreasing loop and bridge chains, increasing short tail chains. From the elongation simulation of lamellar structure, craze strength is dropped during the degradation, because of decreasing oriented interlamellar chains and drawing of the molecular chains from the crystal part. Multi-scale modeling is conducted to demonstrate the relationship between microscopic structure changes and macroscopic mechanical properties. As a result, macroscopic fracture strain is reduced by the degradation, because craze growth rate becomes faster with the degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Society of Materials Science, Japan
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.