Abstract

Effects of the amount of iron/sulfur catalyst on yields and hydrogen transfer of Victorian brown coal were investigated using two kinds of process solvents derived from the two-stage brown coal liquefaction (BCL) process; one is a solvent recycled in primary hydrogenation (PY-S, non-hydrogen donor solvent), and the other is a solvent recovered from secondary hydrogenation over Ni-Mo catalyst (SD-S, hydrogen donor solvent). In addition, the influence of hydrogen pressure and reaction time were also investigated using these solvents in the presence of the catalyst.SD-S was effective under non-catalytic and lower hydrogen pressure conditions compared with PY-S, but distillate yield was low under these conditions. On the other hand, PY-S provided higher distillate yield and hydrogen efficiency (defined by ratio of distillate yield to amount of hydrogen transferred to all liquefaction products) than SD-S under the condition of high hydrogen pressure and high catalyst concentration. These results indicate that the effects of the catalyst on liquefaction reaction is small in hydrogen donor solvent, and non-donor solvent is effective under severe conditions. The hydrogen efficiency increased with increases in pressure and catalyst concentration, and showed a peak at the optimum reaction time, which depended on the conditions and solvent properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.