Abstract

Coordination polymers (CPs) or metal-organic frameworks (MOFs) are attractive porous materials because of their potential applications such as molecular storage, separation, heterogeneous catalysis, chemical sensing and others. Recently, nano-sized MOFs have been studied as drug delivery vehicles and biomedical imaging agents. Despite the growing interest on MOFs in the biological field, their instability and poor biocompatibility restrict their application to biomaterials. In order to improve the stability and to provide biocompatibility, surface modification of MOFs has been advanced by using a thin silica shell, hydrophilic organic polymers (PEG and PVP) and biomolecules. In this topic, I focus on the recent researches on the surface modification of MOF nanoparticles with biomolecules such as nucleic acid, lipid bilayer and protein. The MOF nanoparticles covered with biomolecules exhibit increased stability under physiological condition, and enhanced cellular uptake compared with unmodified MOF nanoparticles. These results clearly indicate that biomolecule conjugation to MOFs is a useful strategy for creating novel biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.