Abstract
Diabetic vasculopathy, encompassing complications such as diabetic retinopathy, represents a significant source of morbidity, with inflammation playing a pivotal role in the progression of these complications. This study investigates the influence of m6A modification and the m6A demethylase FTO on macrophage polarization and its subsequent effects on diabetic microvasculopathy. We found that diabetes induces a shift in macrophage polarization towards a pro-inflammatory M1 phenotype, which is associated with a reduction in m6A modification levels. Notably, FTO emerges as a critical regulator of m6A under diabetic conditions. In vitro experiments reveal that FTO not only modulates macrophage polarization but also mediates their interactions with vascular endothelial cells. In vivo experiments demonstrate that FTO deficiency exacerbates retinal inflammation and microvascular dysfunction in diabetic retinas. Mechanistically, FTO stabilizes mRNA through an m6A-YTHDF2-dependent pathway, thereby activating the PI3K/AKT signaling cascade. Collectively, these findings position FTO as a promising therapeutic target for the management of diabetic vascular complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.