Abstract

Activation of the renin-angiotensin system (RAS) is thought to promote myocardial fibrosis. However, it is unclear whether this physiological fibrotic response results from chronic hemodynamic stress or from direct cellular signaling. Male C57B/6 mice were randomly assigned to receive angiotensin II (AngII) (2.0 μg kg(-1) min(-1)), AngII+hydralazine (6.9 μg kg(-1) min(-1)) or saline (control) via osmotic pumps for 7 days. Blood pressure was measured via noninvasive plethysmography. Hearts were harvested and processed for analysis. Cellular infiltration and collagen deposition were analyzed using histological staining. Molecular mediators were assessed using quantitative RT-PCR. As previously described, animals that received AngII developed hypertension and multifocal cellular infiltration by SMA(+)/CD133(+) fibroblast progenitors followed by collagen deposition. The coadministration of hydralazine with AngII completely inhibited the hypertensive effects of AngII (P0.01) and resulted in minimal cellular infiltration and minimal collagen deposition. These findings were in the context of persistent RAS activation, which was evidenced by elevation in serum aldosterone levels in animals that received AngII or AngII+hydralazine compared with animals that received saline. At the molecular level, infusion of AngII resulted in the significant upregulation of profibrotic factors (connective tissue growth factor-7.8±0.7 fold), proinflammatory mediators (TNFα-4.6±0.8 fold; IL-1β-6.4±2.6 fold) and chemokines (CCL2-3.8±1.0 fold; CXCL12-3.2±0.4 fold), which were inhibited when hydralazine was also infused. We provide evidence that myocardial infiltration by fibroblast progenitor cells secondary to AngII and the resultant fibrosis can be prevented by the addition of hydralazine. Furthermore, the beneficial effects of hydralazine were observed while maintaining RAS activation, suggesting that the mechanism of fibrosis is blood pressure dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.