Abstract

ATP turnover of isolated rabbit papillary muscles, contracting isometrically at 20 degrees C, was determined in oxygen and during 40 min of exposure to nitrogen (anoxia). Stimulus frequency was 0.2 hertz (Hz) in oxygen and 0.2 or 1.0 Hz in nitrogen. In oxygen, ATP turnover was determined from oxygen consumption using a P/O2 ratio of 6.3. The time-dependent rate of ATP turnover in nitrogen was found from the production of lactate, and the changes in adenine nucleotides and phosphocreatine, measured in rapidly frozen preparations at different time-points during the anoxic period. A P/lactate ratio of 1.5 was used. In muscles stimulated at 0.2 Hz, twitch force dropped during the anoxic period to 33% while force production of muscles stimulated at 1.0 Hz stopped completely. However, in the latter muscles, resting force rose to 19% of the twitch force in oxygen. The rate of ATP hydrolysis in anoxia depended strongly on stimulus frequency, indicating that it is not solely determined by the glycolytic capacity. In the 0.2 Hz-stimulated muscles the decrease in energy turnover occurred in parallel with the drop in force. However, the rise in resting force in muscles stimulated at 1.0 Hz occurred when ATP turnover was close to zero. It was concluded that anoxia hardly affects the energy required for twitch force production, but that the rise of resting force measured when twitch force had disappeared occurred when the rates of cross-bridge cycling and calcium turnover were very low.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.