Abstract

Magnetic resonance T1 -weighted images are routinely used for human brain segmentation, brain parcellation, and clinical diagnosis of demyelinating diseases. Myelin is thought to influence the longitudinal relaxation commonly described by a mono-exponential recovery, although reports of bi-exponential longitudinal relaxation have been published. The purpose of this work was to investigate if a myelin water T1 contribution could be separated in geometrically sampled Look-Locker trains of low flip angle gradient echoes. T1 relaxograms from normal human brain were computed by a spatially regularized inverse Laplace transform after estimating the apparent inversion efficiency. With sufficiently long inversion-time sampling (ca. 5 × T1 of cerebrospinal fluid), the T1 relaxogram revealed a short-T1 peak (106-225 ms). The apparent fraction of this water component increased in human brain white matter from 8.3% at 3 T, to 11.3% at 4 T and 15.0% at 7 T. The T2 * of the short-T1 peak at 3 T was shorter, 27.9 ± 13.0 ms, than that of the long-T1 peak, 51.3 ± 5.6 ms. The short-T1 fraction is interpreted as the water resident in myelin. Its detection is facilitated by longer T1 of axoplasmic water at higher magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.