Abstract

Pituitary gland is a well-known endocrine tissue. The hypothalamo-neurohypophysial system, containing arginine vasopressin and oxytocin, shows a reversible morphological reorganization of both neurons and glial cells during chronic physiological stimulations. Since many signal transducing and cell adhesion molecules (CAMs) are recovered in membrane microdomain (MD) fractions, MDs are considered as signaling platforms of cells. In order to know the molecular background for these endocrine systems, we characterized MD-components derived from rat pituitary and found specific enrichment of several proteins in the fraction. One of them was identified as myelin protein zero (P0) with mass analysis and this result was further confirmed by a result that a specific antibody to this protein reacted to the authentic P0 protein in the myelin fraction of rat sciatic nerve. P0 is one of type-I transmembrane CAMs and a major structural component of mammalian peripheral nerve myelin. In mammals, expression of P0 has been considered to be restricted to peripheral nervous system. This result however indicates that P0 expresses more widely and its enrichment in the MD-fraction from rat pituitary suggests the participation in cell-cell communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.