Abstract

ObjectiveThe myelin impairment in demyelinating Charcot-Marie-Tooth (CMT) disease leads to various degrees of axonal degeneration, the ultimate cause of disability. We aimed to assess the pathophysiological changes in axonal function related to the neuropathy severity in hypo-/demyelinating CMT patients associated with myelin protein zero gene (MPZ) deficiency. MethodsWe investigated four family members (two parents and two sons) harboring a frameshift mutation (c.306delA, p.Asp104ThrfsTer14) in the MPZ gene, predicted to result in a nonfunctional P0, by conventional conduction studies and multiple measures of motor axon excitability. In addition to the conventional excitability studies of the median nerve at the wrist, we tested the spinal accessory nerves. Control measures were obtained from 14 healthy volunteers. ResultsThe heterozygous parents (aged 56 and 63) had a mild CMT1B whereas their two homozygous sons (aged 31 and 39 years) had a severe Dejerine-Sottas disease phenotype. The spinal accessory nerve excitability could be measured in all patients. The sons showed reduced deviations during depolarizing threshold electrotonus and other depolarizing features which were not apparent in the accessory and median nerve studies of the parents. Mathematical modeling indicated impairment in voltage-gated sodium channels. This interpretation was supported by comparative modeling of excitability measurements in MPZ deficient mice. ConclusionOur data suggest that axonal depolarization in the context of abnormal voltage-gated sodium channels precedes axonal degeneration in severely hypo-/demyelinating CMT as previously reported in the mouse models. SignificanceMeasures of the accessory nerve excitability could provide pathophysiological markers of neurotoxicity in severe demyelinating neuropathies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.