Abstract
A growing body of neuroimaging evidence shows that white matter can change as a result of experience and structured learning. Although the majority of previous work has used diffusion MRI to characterize such changes in white matter, diffusion metrics offer limited biological specificity about which microstructural features may be driving white matter plasticity. Recent advances in myelin-specific MRI techniques offer a promising opportunity to assess the specific contribution of myelin in learning-related plasticity. Here we describe the application of such an approach to examine structural plasticity during an early intervention in preliterate children at risk for dyslexia. To this end, myelin water imaging data were collected before and after a 12-week period in (1) at-risk children following early literacy training (n = 13–24), (2) at-risk children engaging with other non-literacy games (n = 10–17) and (3) children without a risk receiving no training (n = 11–22). Before the training, regional risk-related differences were identified, showing higher myelin water fraction (MWF) in right dorsal white matter in at-risk children compared to the typical control group. Concerning intervention-specific effects, our results revealed an increase across left-hemispheric and right ventral MWF over the course of training in the at-risk children receiving early literacy training, but not in the at-risk active control group or the no-risk typical control group. Overall, our results provide support for the use of myelin water imaging as a sensitive tool to investigate white matter and offer a first indication of myelin plasticity in young children at the onset of literacy acquisition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.