Abstract

Tuberculosis (TB) remains an unsolved community health problem since identification of its causing microorganism called Mycobacterium tuberculosis (MTB) by Robert Koch in 1882. Annually, eight million TB cases are newly reported and 2~3 million patients die from TB. Pulmonary TB is highly infectious and untreated pulmonary TB patients are believed to infect >10 people in a year. The conventional methods for diagnosis of TB are chest X-ray and isolation of the causing microorganisms from patient specimens. Screening of TB is conducted with smeared sputum in slides, and TB is confirmed by identification of MTB in cultured specimens. One of the fatal pitfalls of screening detection for smeared sputum is that it is impossible to distinguish MTB and other acid-fast bacilli (AFB) because they are stained equally with Ziehl-Neelsen (ZN) stain. Culture of MTB is the most reliable method for diagnosis of TB but it takes 4~8 weeks. In this report, we suggest a fast and highly-reliable MTB detection method that distinguishes AFB in sputum samples. Purified DNA from the AFB stained slide samples offered by The Korean Institute of Tuberculosis were used to detect infected MTB in patients. PCR, real-time PCR and reverse blot hybridization assay (REBA) methods were applied to purified DNA. Conclusively, the real-time PCR method was confirmed to produce high sensitivity and we were able to further detect drug-resistant MTB with REBA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.