Abstract

Myasthenia gravis (MG) is an organ-specific autoimmune disease in which autoantibodies against nicotinic acetylcholine receptors (AChR) at the postsynaptic membrane cause loss of functional AChR and disturbed neuromuscular transmission. The immunopathogenic mechanisms responsible for loss of functional AChR include antigenic modulation by anti-AChR antibodies, complement-mediated focal lysis of the postsynaptic membrane, and direct interference with binding of acetylcholine to the AChR or with ion channel function. The loss of AChR and subsequent defective neuromuscular transmission is accompanied by increased expression of the different AChR subunit genes, suggesting a role for the target organ itself in determining susceptibility and severity of disease. Experimental autoimmune myasthenia gravis (EAMG) is an animal model for the disease MG, and is very suitable to study the immunopathogenic mechanisms leading to AChR loss and the response of the AChR to this attack. In this article the current concepts of the structure and function of the AChR and the immunopathological mechanisms in MG and EAMG are reviewed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.