Abstract
AbstractHuman respiration reflects abundant physiological information and could enable non‐invasive monitoring, providing information about various biological parameters such as respiration rate and depth. The rapidly growing field of humidity sensors bring forward the requirement for good performance. In this work, by virtue of good hydrophilicity and conductivity, a MXene/thermoplastic polyurethane (TPU) composite film is prepared by coating MXene nanosheets on chitosan‐modified TPU electrospun nanofibers via electrostatic interactions, for fabricating a humidity sensor. Based on the principle that the tunnel resistance changing with water molecules influences the distance of MXene nanosheets, the MXene/TPU humidity sensor exhibits fast response (12 s), wide humidity response range (11–94% RH), low hysteresis (<7% RH), and excellent repeatability. The humidity sensor can be assembled with a face mask for distinguishing different human respiration patterns and accurately monitoring respiratory signals during different physical activities, suggesting its promising applications in the fields of respiratory monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.