Abstract

Negative permittivity has taken off as a research topic in percolative composites recent years. Comparing with the common conductive constituent element in the preparation of metamaterials such as metal, one-dimensional conductive carbon nanotubes (CNTs) provide another choice of functional phase. In this paper, barium titanate (BaTiO3) with multi-walled carbon nanotubes (MWCNTs) uniformly dispersed in the ceramic matrix were prepared by traditional ceramic sintering technology. Field emission scanning electron microscopy, X-ray diffraction and Raman spectroscopy were used to characterize microstructures and phase composition of the metacomposites. With the increasing of CNTs content, the percolation phenomenon of electrical conductivity (9.95 wt%) was found and the conductive mechanism changed because of the formation of conductive MWCNTs networks. Moreover, the negative permittivity behavior was observed when the MWCNTs content reached 7 wt% and the plasma-like negative permittivity behavior could be well explained by the low frequency plasmonic state generated from conductive nanotube networks using the Drude model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.