Abstract
We study the properties of vectorlike fermions that have the same gauge charges as the Standard Model lepton doublets, but opposite lepton number. These antileptons undergo decays mediated by heavier scalar leptoquarks, while the symmetries of this renormalizable model protect the vectorlike fermions and the leptoquarks from standard decays probed so far at colliders. We derive upper limits on the new Yukawa couplings imposed by flavor-changing processes, including B→Kνν¯ and Bs−B¯s mixing, and show that they are compatible with prompt antilepton decays at the LHC for wide parameter ranges. If the new particles couple predominantly to second-generation quarks, then their collider probes involve multiple jets and two taus or neutrinos, and are hampered by large backgrounds. If couplings to third-generation quarks are large, then the collider signals involve top quarks, and can be probed more efficiently at the LHC. Even in that case, both the vectorlike fermion doublet and the leptoquarks remain more elusive than in models with standard decays. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.