Abstract

Ion-channel beta-subunits are ancillary proteins that co-assemble with alpha-subunits to modulate the gating kinetics and enhance stability of multimeric channel complexes. Despite their functional importance, dysfunction of potassium-channel beta-subunits has not been associated with disease. Recent physiological studies suggest that KCNE1 encodes beta-subunits (hminK) that co-assemble with KvLQT1 alpha-subunits to form the slowly activating delayed rectifier K+ (IKs) channel. Because KVLQT1 mutations cause arrhythmia susceptibility in the long QT syndrome (LQT), we hypothesized that mutations in KCNE1 also cause this disorder. Here, we define KCNE1 missense mutations in affected members of two LQT families. Both mutations (S74L, D76N) reduced IKs by shifting the voltage dependence of activation and accelerating channel deactivation. D76N hminK also had a strong dominant-negative effect. The functional consequences of these mutations would be delayed cardiac repolarization and an increased risk of arrhythmia. This is the first description of KCNE1 as an LQT gene and confirms that hminK is an integral protein of the IKs channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.