Abstract
PRKAR1A encodes the regulatory subunit type 1-alpha (RIalpha) of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA). Inactivating PRKAR1A mutations are known to be responsible for the multiple neoplasia and lentiginosis syndrome Carney complex (CNC). To date, at least 117 pathogenic variants in PRKAR1A have been identified (online database: http://prkar1a.nichd.nih.gov). The majority are subject to nonsense mediated mRNA decay (NMD), leading to RIalpha haploinsufficiency and, as a result, activated cAMP signaling. Recently, it became apparent that CNC may be caused not only by RIalpha haploinsufficiency, but also by the expression of altered RIalpha protein, as proven by analysis of expressed mutations in the gene, consisting of amino acid substitutions and in-frame genetic alterations. In addition, a new subgroup of mutations that potentially escape NMD and result in CNC through altered (rather than missing) protein has been analyzed-these are frame-shifts in the 3' end of the coding sequence that shift the stop codon downstream of the normal one. The mutation detection rate in CNC patients is recently estimated at above 60%; PRKAR1A mutation-negative CNC patients are characterized by significant phenotypic heterogeneity. In this report, we present a comprehensive analysis of all presently known PRKAR1A sequence variations and discuss their molecular context and clinical phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.