Abstract

Abstract Objectives To use exon 7-specific genomic polymerase chain reaction (PCR) products to identify the genotypes of normal, affected, and carrier female dogs in pedigrees segregating Golden Retriever muscular dystrophy (GRMD), and to confirm the concordant segregation of the mutation in all carrier and affected dogs presently available. Design The GRMD mutation is found in the consensus splice acceptor site in intron 6 of the canine dystrophin gene PCR cycle-sequencing and restriction fragment length polymorphism/PCR were used for determination of the pattern of segregation of the point mutation which causes GRMD. Animals Normal, clinically affected, and obligate carrier dogs in pedigrees of GRMD. Procedure DNA from blood was amplified, using PCR and primers that bracket all of exon 7 of the canine dystrophin gene as well as 100 base pairs of intron on either side. PCR products were either cycle-sequenced directly or submitted to a second round of PCR, using 1 of the original primers coupled with a mutagenic restriction fragment length polymorphism-primer, which thus creates an artificial restriction site. Digestion with Stu I detected the normal allele. To detect the affected allele, Sau96 I was used to digest the 310-base pair exon 7 genomic fragment directly. Conclusions Simple, clear diagnosis of carrier status was possible using these methods. This mutation is passed through all carrier and affected dogs in both United States GRMD colonies and the colony in Australia. Clinical Relevance Rapid, accurate diagnosis of carrier and affected dogs will enhance study of this homologue of Duchenne muscular dystrophy. (Am J Vet Res 1996; 57:650–654)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.