Abstract

A single G3.U70 base pair in the acceptor helix is the major determinant for the identity of alanine transfer RNAs (Hou & Schimmel, 1988). Introduction of this base pair into foreign tRNA sequences confers alanine acceptance on them. Moreover, small RNA helices with as few as seven base pairs can be aminoacylated with alanine, provided that they encode the critical base pair (Francklyn & Schimmel, 1989). Alteration of G3.U70 to G3.C70 abolishes aminoacylation with alanine in vivo and in vitro. We describe here the mutagenesis and selection of a single point mutation in Escherichia coli Ala-tRNA synthetase that compensates for a G3.C70 mutation in tRNAAla. The mutation maps to a region previously implicated as proximal to the acceptor end of the bound tRNA. In contrast to the wild-type enzyme, the mutant charges small RNA helices that encode a G3.C70 base pair. However, the mutant enzyme retains specificity for alanine tRNA and can serve as the sole source of Ala-tRNA synthetase in vivo. The results demonstrate the capacity of an aminoacyl-tRNA synthetase to compensate through a single amino acid substitution for mutations in the major determinant of its cognate tRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.