Abstract

This study was conducted to measure the mutagenic potential of municipal sewage sludge amended soil. Two separate sludge samples were collected from one municipal wastewater treatment plant and applied to undisturbed soil lysimeters over a 9 mo interval. Soil and sludge samples were collected for approximately 2 yr following sludge application. Samples were solvent extracted using methylene chloride and methanol, and the bacterial mutagenicity of the resulting residue determined using the Salmonella/microsome assay. The maximum specific activity of the sludge amended soil was 416 net revertants per 10 mg of residue induced by the methanol fraction extracted from the Weswood soil collected 154 d following the first sludge application. In the Padina sand, the maximum specific activity was 320 net revertants per 10 mg of residue induced by the methanol fraction extracted from the sample collected 154 d following the first sludge application. The specific activity of the sludge amended soil was observed to decrease slowly with time. For both the Padina and the Weswood soils, mutagenic organic chemicals were detected in soil samples collected 510 d following the second sludge application. For the Weswood soil, the mutagenic activity per unit weight of soil with metabolic activation of the samples collected 510 d after the final sludge application was decreased by 15 and 76% for the methylene chloride and methanol fractions, respectively, when compared to the maximum weighted activity observed 56 d after the final sludge application. The results indicate that municipal sewage sludges may contain organic mutagens which are persistent in the soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.