Abstract

AuaA is a membrane-bound farnesyltransferase from the myxobacterium Stigmatella aurantiaca involved in the biosynthesis of aurachins. Like other known membrane-bound aromatic prenyltransferases, AuaA contains two conserved aspartate-rich motifs. Several amino acids in the first motif NXxxDxxxD were proposed to be responsible for prenyl diphosphate binding via metal ions like Mg(2+). Site-directed mutagenesis experiments demonstrated in this study that asparagine, but not the arginine residue in NRxxDxxxD, is important for the enzyme activity of AuaA, differing from the importance of NQ or ND residues in the NQxxDxxxD or NDxxDxxxD motifs observed in some membrane-bound prenyltransferases. The second motif of known membrane-bound prenyltransferases was proposed to be involved in the binding of their aromatic substrates. KDIxDxEGD, also found in AuaA, had been previously speculated to be characteristic for binding of flavonoids or homogenisate. Site-directed mutagenesis experiments with AuaA showed that KDIxDxEGD was critical for the enzyme activity. However, this motif is very likely not specific for flavonoid or homogenisate prenyltransferases, because none of the tested flavonoids was accepted by AuaA or its mutant R53A in the presence of farnesyl, geranyl or dimethylallyl diphosphate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.