Abstract

Timely hemostasis, antibacterial activity, and good adhesion are essential for wound healing. Here, we report about a novel nanocomposite hydrogel with hemostatic, antibacterial, and adhesive properties constructed with a mussel-inspired strategy. Oxidized alginic acid, dopamine, and antimicrobial peptide ε-polylysine were used to prepare a nanocomposite (ODP), and then further cross-linked with acrylamide to fabricate a nanocomposite hydrogel (ODPA). ODPA hydrogel can adhere to the surface of bleeding organs and arrest bleeding within 30 s. It can also be stretched to 12 times its original length and withstand a compression strain of 40 %, and shows effective inhibition on gram-positive and gram-negative bacteria. Compared with commercial alginate sponge, ODPA hydrogel can accelerate the healing of infected full-thickness wound by reducing inflammation, promoting angiogenesis, and collagen deposition. Therefore, the nanocomposite hydrogel is expected to be a multifunctional dressing for promoting healing of infected wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.