Abstract

AbstractMussel aquaculture activities in coastal areas are growing rapidly throughout the world, inducing an increasing interest and concern for their potential impact on coastal marine environments. We have investigated the impact of organic loads due to the biodeposition of a mussel farm in a lagoonar ecosystem of the Mediterranean Sea (Bizerta lagoon, northern Tunisia) on the benthic environment. The most evident changes in the benthic habitat under the farm were a strong reduction of oxygen penetration into the bottom sediments and a large accumulation of chlorophyll a (concentrations up to 16 μg g–1), phaeopigments (concentrations up to 48 μg g–1) and total organic matter (concentrations up to 12%). Results from univariate analysis of the nematofaunal data show that the nematode abundance increased in all the stations located inside the mussel farm (I1, I2, I3) and the site I2, located in the centre of the mussel farm, was the most affected. At this site, Shannon-Wiener index H′, species richness (d), evenness (J′) and number of species (S) decreased significantly. Results from multivariate analyses of the species abundance data demonstrated that responses of nematode species to the organic matter enrichment were varied: Mesacanthion diplechma was eliminated at the most affected station (I2), whereas the abundances of Paracomesoma dubium, Terschellingia longicaudata and T. communis were significantly enhanced. Responses of free-living nematodes to mussel farm biodeposition (elimination of some species and increase or decrease of some others) could lead to food limitation for their predators that, ultimately, could alter entire communities and ecosystems. Consequently, we suggest that site-specific hydrodynamic and biogeochemical conditions should be taken into account when planning new mussel farms, and meiobenthic communities should be monitored before and after farm development to prevent excessive modifications of benthic assemblage structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.