Abstract

Local interactions, biotic and abiotic, can have a strong influence on the large-scale properties of ecosystems. However, ecological models often explore the influence of local biotic interactions where physical disturbance is included as a large-scale and imposed source of variability but is not allowed to interact with biotic processes at the local scale. In marine intertidal communities dominated by mussels, wave disturbances create gaps in the mussel bed that recover through a successional sequence. We present a lattice model of mussel disturbance dynamics that allows local interactions between wave disturbance and mussel recolonization, in which each cell of the lattice can be empty, occupied by a mussel bed element, or disturbed (which corresponds to a newly disturbed cell that has unstable edges). As in natural ecosystems, wave disturbance can also spread from disturbed to adjacent occupied cells, and recolonization can also spread from occupied to adjacent empty cells. We first validate the local rules from artificial gap experiments and from natural gap monitoring along the Oregon coast. We analyze the properties of the model system as a function of different oceanographic forcings of productivity and disturbance. We show that the mussel bed can go through phase transitions characterized by a large sensitivity of mussel cover and patterns to oceanographic forcings but also that criticality (scale invariance) is observed over wide ranges of parameters, which suggests self-organization. We also show that spatial patterns in the intertidal can provide a robust signature of local processes and can inform about oceanographic regimes. We do so by comparing the large-scale patterns of the simulation (scaling exponents) with field data, which suggest that some experimental sites are close to criticality. Our results suggest that regional patterns in disturbed populations can be explained by local biotic and abiotic processes submitted to oceanographic forcing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.