Abstract

The order Chiroptera (bats) is the second largest group of mammals. One of the essential adaptations that have allowed bats to dominate the night skies is laryngeal echolocation, where bats emit ultrasonic pulses and listen to the returned echo to produce high-resolution 'images' of their surroundings. There are two possible scenarios for the evolutionary origin of laryngeal echolocation in bats: (1) a single origin in a common ancestor followed by the secondary loss in Pteropodidae, or (2) two convergent origins in Rhinolophoidea and Yangochiroptera. Although data from palaeontological, anatomical, developmental and genomic studies of auditory apparatuses exist, they remain inconclusive concerning the evolutionary origin of bat laryngeal echolocation. Here we compared musculoskeletal morphogenesis of the larynx in several chiropteran lineages and found distinct laryngeal modifications in two echolocating lineages, rhinolophoids and yangochiropterans. Our findings support the second scenario that rhinolophoids and yangochiropterans convergently evolved advanced laryngeal echolocation through anatomical modifications of the larynx for ultrasonic sound generation and refinement of the auditory apparatuses for more detailed sound perception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.