Abstract
The quail fast skeletal troponin I (TnI) gene is a member of the contractile protein gene set and is expressed exclusively in differentiated skeletal muscle cells. TnI gene transcription is controlled by an internal regulatory element (IRE), located within the first intron, that functions as a muscle-specific enhancer. Recent studies have shown that the TnI IRE may interact directly with the muscle regulatory factors MyoD, myogenin, and Myf-5 to produce a muscle-specific expression pattern, since these factors trans-activate cotransfected TnI gene constructs in C3H10T1/2 fibroblasts. In this study, we have examined the protein-IRE interactions that are responsible for transcriptionally activating the TnI gene during skeletal muscle development. We demonstrate that the helix-loop-helix muscle regulatory factors MyoD, myogenin, Myf-5, and MRF4, when complexed with the immunoglobulin enhancer-binding protein E12, interact with identical nucleotides within a muscle regulatory factor-binding site (MRF site) located in the TnI IRE. The nuclear proteins that bind to the MRF site are restricted to skeletal muscle cells, since protein extracts from HeLa, L, and C3H10T1/2 fibroblasts do not contain similar binding activities. Importantly, the TnI MRF site alone is not sufficient to elicit the full enhancer activity associated with the IRE. Instead, two additional regions (site I and site II) are required. The proteins that interact with site I and site II are expressed in both muscle and nonmuscle cell types and by themselves are ineffective in activating TnI gene expression. However, when the MRF site is positioned upstream or downstream of site I and site II, full enhancer activity is restored. We conclude that helix-loop-helix muscle regulatory factors must interact with ubiquitously expressed proteins to generate the active TnI transcription complex that is present in differentiated muscle fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.