Abstract

This paper attempts to integrate some important concepts about the various mechanisms that are thought to cause blood flow to rise during rhythmic exercise. Mechanisms including the muscle pump, substances released by skeletal muscle, substances transported by blood, and factors released by nerves have been postulated to contribute to the rise in muscle blood flow during exercise. Additionally, the factors that initiate the dilation may not be those which sustain it. Although there is normally a close relationship between contractile activity, metabolic rate, and muscle blood flow, this relationship can be disrupted under a variety of circumstances and the active skeletal muscle overperfused. This delinking of flow and metabolism raises important questions about the nature of the vasodilating substances responsible for the rise in blood flow during exercise. We propose that understanding the mechanisms responsible for the "delinking" of flow and metabolism, along with a more synergistic view of current concepts, can provide new insight into the mechanisms which govern exercise hyperemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.