Abstract

1. The present study was conducted to determine whether dynamic interaction torques are significant for control of digit movements and to investigate whether such torques are compensated by specific muscle activation patterns. 2. Angular positions of the metacarpophalangeal (MP) and proximal interphalangeal (PIP) joints of the index finger in the flexion/extension plane were recorded with the use of planar electrogoniometers. Muscle activation patterns were monitored with the use of fine wire and surface electromyography of intrinsic and extrinsic finger muscles. 3. Dynamic interaction torques associated with index finger movements were large in relation to joint torques produced by muscles, especially in faster movements. The significance of dynamic interaction torques was demonstrated in model simulations of two-joint finger motion in response to joint torque inputs. Removal of interaction torques from the model inputs produced movements that differed greatly from digit motions produced by human subjects. 4. Electromyogram (EMG) and torque patterns associated with finger movements of different speeds indicated that muscle activity is necessary not only for producing motion at the joints but also to counteract segmental interaction torques. This was especially evident during movements that required voluntary maintenance of a constant MP joint angle during motion of the distal segment about the PIP joint. Under these conditions, muscle moments acting at the MP acted directly to counteract torques at the MP arising from motion at the PIP. 5. Neural mechanisms underlying control of index finger movement are discussed with reference to the implications of dynamic interaction torques. Potential control strategies include accurate programming of muscle activation patterns, appropriate use of motion-dependent peripheral afferent information, and control of the finger as a viscoelastic system through coactivation of flexor and extensor musculature. It is concluded that additional research incorporating study of motion in three dimensions and the use of mechanical models of the finger and related musculature is required to determine how interaction torques are compensated during finger motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.