Abstract

Manipulating gene expression in the developing mouse brain in utero holds great potential for functional genetics studies. However, it has previously largely been restricted to the manipulation of embryonic stages post-neurulation. A protocol was developed to inject the amniotic cavity at embryonic day (E)7.5 and deliver lentivirus, encoding cDNA or shRNA, targeting >95% of the neural plate and neural crest cells, contributing to the future brain, spinal cord, and peripheral nervous system. This protocol describes the steps necessary to achieve successful transduction, including grinding of the glass capillary needles, pregnancy verification, developmental staging using ultrasound imaging, and optimal injection volumes matched to embryonic stages. Following this protocol, it is possible to achieve transduction of >95% of the developing brain with high-titer lentivirus and thus perform whole-brain genetic manipulation. In contrast, it is possible to achieve mosaic transduction using lower viral titers, allowing for genetic screening or lineage tracing. Injection at E7.5 also targets ectoderm and neural crest contributing to distinct compartments of the eye, tongue, and peripheral nervous system. This technique thus offers the possibility to manipulate gene expression in mouse neural-plate- and ectoderm-derived tissues from preneurulation stages, with the benefit of reducing the number of mice used in experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.