Abstract

Abstract One of the primary sources of predictability for seasonal hydroclimate forecasts are sea surface temperatures (SSTs) in the tropical Pacific, including El Niño–Southern Oscillation. Multiyear La Niña events in particular may be both predictable at long lead times and favor drought in the bimodal rainfall regions of East Africa. However, SST patterns in the tropical Pacific and adjacent ocean basins often differ substantially between first- and second-year La Niñas, which can change how these events affect regional climate. Here, we demonstrate that multiyear La Niña events favor drought in the Horn of Africa in three consecutive seasons [October–December (OND), March–May (MAM), OND]. But they do not tend to increase the probability of a fourth season of drought owing to the sea surface temperatures and associated atmospheric teleconnections in the MAM long rains season following second-year La Niña events. First-year La Niñas tend to have both greater subsidence over the Horn of Africa, associated with warmer waters in the west Pacific that enhance the Walker circulation, and greater cross-continental moisture transport, associated with a warm tropical Atlantic, as compared to second-year La Niñas. Both the increased subsidence and enhanced cross-continental moisture transport favors drought in the Horn of Africa. Our results provide a physical understanding of the sources and limitations of predictability for using multiyear La Niña forecasts to predict drought in the Horn of Africa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.