Abstract

In the present work, a novel approach is proposed for the simultaneous determination of three widely used pesticides (namely, fuberidazole (FBZ), carbaryl (CBL) and benomyl (BNM)). The proposed method is based on a single continuous-flow solid surface fluorimetric multi-optosensor implemented with the use of a minicolumn placed just before the flow-through cell and filled with C18 silica gel. The three pesticides are determined from an only injection (simultaneous determination): the minicolumn strongly retains two of them while the third develops a transitory signal when passing through the sensing solid microzone. Then, two alternate eluting solutions appropriately selected perform the sequential elution of the two pesticides from the minicolumn, achieving the detection zone and developing their transitory signals. The proposed optosensor works under optimal sensitivity conditions for all the three analytes because of the use of multi-wavelength fluorescence detection mode, so recording three different signals corresponding at three pairs of optima excitation/emission wavelengths. Using a sample volume of 2100 μl, the system was calibrated in the range 0.5–15, 40–800 and 50–1000 μg l−1 with detection limits of 0.09, 6 and 9 μg l−1 for FBZ, CBL and BNM, respectively. The R.S.D values (n=10) were lower than 2% in all cases. The proposed methodology was applied satisfactorily to water samples. Recovery percentages ranging from 97.8 to 101.1%, 97.9 to 103% and from 97 to 105% for FBZ, CBL and BNM, respectively, were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.