Abstract
The zero-inflated Poisson (ZIP) distribution has been shown to be useful for modeling outcomes of manufacturing processes producing numerous defect-free products. When there are several types of defects, the multivariate ZIP (MZIP) model can be useful to detect specific process equipment problems and to reduce multiple types of defects simultaneously. This article proposes types of MZIP models and investigates distributional properties of an MZIP model. Finite-sample simulation studies show that, compared to the method of moments, the maximum likelihood method has smaller bias and variance, as well as more accurate coverage probability in estimating model parameters and zero-defect probability. Real-life examples from a major electronic equipment manufacturer illustrate how the proposed procedures are useful in a manufacturing environment for equipment-fault detection and for covariate effect studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.