Abstract
We study a class of multivariate tempered stable distributions and introduce the associated class of tempered stable Sato subordinators. These Sato subordinators are used to build additive inhomogeneous processes by subordination of a multiparameter Brownian motion. The resulting process is additive and time inhomogeneous and it is a generalization of multivariate Lévy processes with good fit properties on financial data. We specify the model to have unit time normal inverse Gaussian distribution and we discuss the ability of the model to fit time inhomogeneous correlations on real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.