Abstract

In this paper a new statistical multivariate model for retinal Optical Coherence Tomography (OCT) B-scans is proposed. Due to the layered structure of OCT images, there is a horizontal dependency between adjacent pixels at specific distances, which led us to propose a more accurate multivariate statistical model to be employed in OCT processing applications such as denoising. Due to the asymmetric form of the probability density function (pdf) in each retinal layer, a generalized version of multivariate Gaussian Scale Mixture (GSM) model, which we refer to as GM-GSM model, is proposed for each retinal layer. In this model, the pixel intensities in each retinal layer are modeled with an asymmetric Bessel K Form (BKF) distribution as a specific form of the GM-GSM model. Then, by combining some layers together, a mixture of GM-GSM model with eight components is proposed. The proposed model is then easily converted to a multivariate Gaussian Mixture model (GMM) to be employed in the spatially constrained GMM denoising algorithm. The Q-Q plot is utilized to evaluate goodness of fit of each component of the final mixture model. The improvement in the noise reduction results based on the GM-GSM model, indicates that the proposed statistical model describes the OCT data more accurately than other competing methods that do not consider spatial dependencies between neighboring pixels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.