Abstract

We propose a novel approach to monotone operator splitting based on the notion of a saddle operator. Under investigation is a highly structured multivariate monotone inclusion problem involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators, as well as various monotonicity-preserving operations among them. This model encompasses most formulations found in the literature. A limitation of existing primal-dual algorithms is that they operate in a product space that is too small to achieve full splitting of our problem in the sense that each operator is used individually. To circumvent this difficulty, we recast the problem as that of finding a zero of a saddle operator that acts on a bigger space. This leads to an algorithm of unprecedented flexibility, which achieves full splitting, exploits the specific attributes of each operator, is asynchronous, and requires to activate only blocks of operators at each iteration, as opposed to activating all of them. The latter feature is of critical importance in large-scale problems. The weak convergence of the main algorithm is established, as well as the strong convergence of a variant. Various applications are discussed, and instantiations of the proposed framework in the context of variational inequalities and minimization problems are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.