Abstract

This paper develops measures of information for multivariate distributions when their supports are truncated progressively. The focus is on the joint, marginal, and conditional entropies, and the mutual information for residual life distributions where the support is truncated at the current ages of the components of a system. The current ages of the components induce a joint dynamic into the residual life information measures. Our study of dynamic information measures includes several important bivariate and multivariate lifetime models. We derive entropy expressions for a few models, including Marshall–Olkin bivariate exponential. However, in general, study of the dynamics of residual information measures requires computational techniques or analytical results. A bivariate gamma example illustrates study of dynamic information via numerical integration. The analytical results facilitate studying other distributions. The results are on monotonicity of the residual entropy of a system and on transformations that preserve the monotonicity and the order of entropies between two systems. The results also include a new entropy characterization of the joint distribution of independent exponential random variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.