Abstract

Data heterogeneity has become a challenging problem in modern data analysis. Classic statistical modeling methods, which assume the data are independent and identically distributed, often show unsatisfactory performance on heterogeneous data. This work is motivated by a multivariate calibration problem from a soil characterization study, where the samples were collected from five different locations. Newly proposed and existing signal regression models are applied to the multivariate calibration problem, where the models are adapted to handle such spatially clustered structure. When compared to a variety of other methods, e.g. kernel ridge regression, random forests, and partial least squares, we find that our newly proposed varying-coefficient signal regression model is highly competitive, often out-performing the other methods, in terms of external prediction error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.