Abstract
We present new methodology and a case study in use of a class of Bayesian predictive synthesis (BPS) models for multivariate time series forecasting. This extends the foundational BPS framework to the multivariate setting, with detailed application in the topical and challenging context of multistep macroeconomic forecasting in a monetary policy setting. BPS evaluates—sequentially and adaptively over time—varying forecast biases and facets of miscalibration of individual forecast densities for multiple time series, and—critically—their time-varying inter-dependencies. We define BPS methodology for a new class of dynamic multivariate latent factor models implied by BPS theory. Structured dynamic latent factor BPS is here motivated by the application context—sequential forecasting of multiple U.S. macroeconomic time series with forecasts generated from several traditional econometric time series models. The case study highlights the potential of BPS to improve of forecasts of multiple series at multiple forecast horizons, and its use in learning dynamic relationships among forecasting models or agents.Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.