Abstract

This research discusses an electric vehicle (EV) relocation problem, wherein multiple types of EVs are transported using heterogeneous trucks. The initial position, battery level of the EVs, and the required number of EVs and empty parking slots at each station are provided as inputs. Relocations are performed during the night, while no EVs are used. Before the end of the relocation planning horizon, each EV must be charged to a certain battery level. The charging process can only be performed when the EV is not being transported. The objectives are to minimise the total transportation costs, the total truck fixed costs, and the total unsatisfied empty parking slot requirements while ensuring that all EV demands are satisfied. A mixed-integer linear programming (MILP) model and construction and improvement heuristic approaches are proposed. The results of the computational experiments indicate that the proposed approaches perform well. [Received: 25 February 2019; Accepted: 26 August 2019]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.