Abstract
As a concise framework, Mask R-CNN achieves promising performance in object detection and instance segmentation. However, there is room for improvement in two aspects. One is that performing multi-task prediction needs more credible feature extraction and multi-scale features integration to handle objects with varied scales. We address this problem by using a novel neck module called SA-FPN (Scale Aware Feature Pyramid Networks), which can accurately help detect and segment the objects of multiple scales. The other is that the isolation between detection and instance segmentation branch exists, causing the gap between training and testing processes. So we propose a unified head module named EJ-Head (Effective Joint Head) to combine two branches into one head, not only realizing the interaction between two tasks, but also enhancing the effectiveness of multi-task learning. Comprehensive experiments on MS-COCO benchmark show that our proposed methods bring noticeable gains for both object detection and instance segmentation.1
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.