Abstract

The switchable wettability is essential for widespread applications in droplet manipulation, rewritable liquid patterning, fluid carrying, and so forth. However, it remains difficult to achieve the multistimuli-responsive, large-range, and reversible wetting switching especially for liquids with low surface tensions through surface topographical management. Here, we apply a simple and effective template-free self-assembly strategy to fabricate microstructured superamphiphobic surfaces that can reversibly switch the wetting performance for oil by transforming the surface morphology in response to multiple stimuli of magnetic fields and mechanical strains. Notably, the noticeably different wetting switching of oil triggered by different stimuli is demonstrated. The contact angles of hexadecane droplets on the as-prepared surfaces can be reversibly switched between 150 ± 1° and 38 ± 2° in response to mechanical strains. Furthermore, the underlying mechanism of wetting switching has been further elucidated using mathematical models. Interestingly, these switchable surfaces dramatically demonstrate the ability to transport oil droplets, without requiring lubricating liquid films. This work not only achieves the large-range and reversible wetting switching for oil but also opens new avenues for fabricating tunable superamphiphobic surfaces with transformable mushroom-like microstructures that can be easily extended to microstructure-dependent friction or adhesion control and used in other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.