Abstract
We have recently introduced a multistep extension of the greedy algorithm for modularity optimization. The extension is based on the idea that merging l pairs of communities (l>1) at each iteration prevents premature condensation into few large communities. Here, an empirical formula is presented for the choice of the step width l that generates partitions with (close to) optimal modularity for 17 real-world and 1100 computer-generated networks. Furthermore, an in-depth analysis of the communities of two real-world networks (the metabolic network of the bacterium E. coli and the graph of coappearing words in the titles of papers coauthored by Martin Karplus) provides evidence that the partition obtained by the multistep greedy algorithm is superior to the one generated by the original greedy algorithm not only with respect to modularity, but also according to objective criteria. In other words, the multistep extension of the greedy algorithm reduces the danger of getting trapped in local optima of modularity and generates more reasonable partitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.