Abstract

In this study, a multistage nonlinear radial basis function (RBF) neural network ensemble forecasting model is proposed for foreign exchanger rates prediction. In the process of ensemble modeling, the first stage produces a great number of single RBF neural network models. In the second stage, a conditional generalized variance (CGV) minimization method is used to choose the appropriate ensemble members. In the final stage, another RBF network is used for neural network ensemble for prediction purpose. For testing purposes, we compare the new ensemble model's performance with some existing neural network ensemble approaches in terms of four exchange rates series. Experimental results reveal that the predictions using the proposed approach are consistently better than those obtained using the other methods presented in this study in terms of the same measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.