Abstract

We present the existence of 2 n stable stationary solutions for a general n -dimensional delayed neural networks with several classes of activation functions. The theory is obtained through formulating parameter conditions motivated by a geometrical observation. Positively invariant regions for the flows generated by the system and basins of attraction for these stationary solutions are established. The theory is also extended to the existence of 2 n limit cycles for the n -dimensional delayed neural networks with time-periodic inputs. It is further confirmed that quasiconvergence is generic for the networks through justifying the strongly order preserving property as the self-feedback time lags are small for the neurons with negative self-connection weights. Our theory on existence of multiple equilibria is then incorporated into this quasiconvergence for the network. Four numerical simulations are presented to illustrate our theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.