Abstract
To see improvements in the imaging performance near biomaterial implants we assessed a multispectral fully phase-encoded turbo spin-echo (ms3D-PE-TSE) sequence for artifact reduction capabilities and scan time efficiency in simulation and phantom experiments.For this purpose, ms3D-PE-TSE and ms3D-TSE sequences were implemented to obtain multispectral images (±20kHz) of a cobalt-chromium (CoCr) knee implant embedded in agarose. In addition, a knee implant computer model and the acquired ms3D-PE-TSE images were used to investigate the possibilities for scan time acceleration using field-of-view (FOV) reduction for off-resonance frequency bins and compressed sensing reconstructions of undersampled data. Both acceleration methods were combined to acquire a +10kHz frequency bin in a second experiment.The obtained ms3D-PE-TSE images showed no susceptibility related artifacts, while ms3D-TSE images suffered from hyper-intensity artifacts. The limitations of ms3D-TSE were apparent in the far off-resonance regions (±[10–20]kHz) located close to the implant. The scan time calculations showed that ms3D-PE-TSE can be applied in a clinically relevant timeframe (~12min), when omitting the three central frequency bins. The feasibility of CS acceleration for ms3D-PE-TSE was demonstrated using retrospective reconstructions before combining CS and rFOV imaging to decrease the scan time for the +10kHz frequency bin from ~10.9min to ~3.5min, while also increasing the spatial resolution fourfold. The temporally resolved signal of ms3D-PE-TSE proved to be useful to decrease the intensity ripples after sum-of-squares reconstructions and increase the signal-to-noise ratio.The presented results suggest that the scan time limitations of ms3D-PE-TSE can be sufficiently addressed when focusing on signal acquisitions in the direct vicinity of metal implants. Because these regions cannot be measured with existing multispectral methods, the presented ms3D-PE-TSE method may enable the detection of inflammation or (pseudo-)tumors in locations close to the implant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.