Abstract

All-inorganic lead halide perovskites (CsPbX3, X = Cl, Br or I) are becoming increasingly important for energy conversion and optoelectronics because of their outstanding performance and enhanced environmental stability. Morphing perovskites into specific shapes and geometries without damaging their intrinsic functional properties is attractive for designing devices and manufacturing. However, inorganic semiconductors are often intrinsically brittle at room temperature, except for some recently reported layered or van der Waals semiconductors. Here, by in situ compression, we demonstrate that single-crystal CsPbX3 micropillars can be substantially morphed into distinct shapes (cubic, L and Z shapes, rectangular arches and so on) without localized cleavage or cracks. Such exceptional plasticity is enabled by successive slips of partial dislocations on multiple [Formula: see text] systems, as evidenced by atomic-resolution transmission electron microscopy and first-principles and atomistic simulations. The optoelectronic performance and bandgap of the devices were unchanged. Thus, our results suggest that CsPbX3 perovskites, as potential deformable inorganic semiconductors, may have profound implications for the manufacture of advanced optoelectronics and energy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.