Abstract

Previous brain structural magnetic resonance imaging studies reported that patients with schizophrenia have brain structural abnormalities, which have been used to discriminate schizophrenia patients from normal controls. However, most existing studies identified schizophrenia patients at a single site, and the genetic features closely associated with highly heritable schizophrenia were not considered. In this study, we performed standardized feature extraction on brain structural magnetic resonance images and on genetic data to separate schizophrenia patients from normal controls. A total of 1010 participants, 508 schizophrenia patients and 502 normal controls, were recruited from 8 independent sites across China. Classification experiments were carried out using different machine learning methods and input features. We tested a support vector machine, logistic regression, and an ensemble learning strategy using 3 feature sets of interest: (1) imaging features: gray matter volume, (2) genetic features: polygenic risk scores, and (3) a fusion of imaging features and genetic features. The performance was assessed by leave-one-site-out cross-validation. Finally, some important brain and genetic features were identified. We found that the models with both imaging and genetic features as input performed better than models with either alone. The average accuracy of the classification models with the best performance in the cross-validation was 71.6%. The genetic feature that measured the cumulative risk of the genetic variants most associated with schizophrenia contributed the most to the classification. Our work took the first step toward considering both structural brain alterations and genome-wide genetic factors in a large-scale multisite schizophrenia classification. Our findings may provide insight into the underlying pathophysiology and risk mechanisms of schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.