Abstract
Land use and land cover change (LULCC) is a key driver of carbon storage changes, especially in complex coastal ecosystems such as the Yellow River Delta (YRD), which is jointly influenced by climate change and resource development. The compounded effects of sea-level rise (SLR) and land subsidence (LS) are particularly prominent. This study is the first to integrate the dual impacts of SLR and LS into a unified framework, using three climate scenarios (SSP1–26, SSP2–45, SSP5–85) provided in the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), along with LS monitoring data, to comprehensively assess future inundation risks. Building on this, and taking into account land use and ecological protection policies in the YRD, three strategic scenarios—Ecological Protection Scenario (EPS), Natural Development Scenario (NDS), and Economic Growth Scenario (EGS)—are established. The PLUS and InVEST models are used to jointly simulate LULCC and carbon storage changes across these scenarios. Unlike previous studies focusing on single driving factors, this research innovatively develops a dynamic simulation system for LULCC and carbon storage driven by the SLR-LS compound effects, providing scientific guidance for land space development and coastal zone planning in vulnerable coastal areas, while enhancing carbon sink potential. The results of the study show the following: (1) Over the past 30 years, the land use pattern of the YRD has generally extended toward the sea, with land use transitions mainly from grasslands (the largest reduction: 1096.20 km2), wetlands, reservoirs and ponds, and paddy fields to drylands, culture areas, construction lands, salt pans, and tidal flats. (2) Carbon storage in the YRD exhibits significant spatial heterogeneity. Low-carbon storage areas are primarily concentrated in the coastal regions, while high-carbon storage areas are mainly found in grasslands, paddy fields, and woodlands. LULCC, especially the conversion of high carbon storage ecosystems to low carbon storage uses, has resulted in an overall net regional carbon loss of 2.22 × 106 t since 1990. (3) The risk of seawater inundation in the YRD is closely related to LS, particularly under low sea-level scenarios, with LS playing a dominant role in exacerbating this risk. Under the EGS, the region is projected to face severe seawater inundation and carbon storage losses by 2030 and 2060.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have