Abstract
It well known that vehicle detection is an important component of the field of object detection. However, the environment of vehicle detection is particularly sophisticated in practical processes. It is comparatively difficult to detect vehicles of various scales in traffic scene images, because the vehicles partially obscured by green belts, roadblocks or other vehicles, as well as influence of some low illumination weather. In this paper, we present a model based on Faster R–CNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes. First, we proposed a Retinex-based image adaptive correction algorithm (RIAC) to enhance the traffic images in the dataset to reduce the influence of shadow and illumination, and improve the image quality. Second, in order to improve the feature expression of the backbone network, we conducted Neural Architecture Search (NAS) on the backbone network used for feature extraction of Faster R–CNN to generate the optimal cross-layer connection to extract multi-layer features more effectively. Third, we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets, and improve the robustness of the model for challenging targets such as small scale and severe occlusion. In the implementation of the model, K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model. Our model has been trained and tested on the UN-DETRAC dataset, and the obtained results indicate that our method has art-of-state detection performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.