Abstract

Thermal barrier coatings (TBC) fabricated by plasma spray can exhibit a wide range of microstructures due to differences in feedstock powders and spraying conditions. Since different microstructures naturally result in different thermal and mechanical properties and service life as thermal barrier coatings, it is of great importance to understand the relationship among the feedstock characteristics, spray conditions and the coating microstructures. Recent research efforts of the author's group to understand fundamental phenomena in plasma spraying of TBC are reviewed from microscopic to macroscopic viewpoints, i.e., direct observation of single droplet impact of molten zirconia by an ultra fast video camera, detection of acoustic emission (AE) signals during plasma spraying by using laser AE technique, and in-situ measurement of the curvature and temperature of a substrate during plasma spraying, from which strain-stress relationships and residual stresses of TBC can be evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.